
International Journal of Research in Advent Technology, Vol.7, No.3, March 2019

E-ISSN: 2321-9637

Available online at www.ijrat.org

1235

Automated Test Case Generation Tool Based On

Pycparser

Bhumikaben Patel (PG Student)
1
, Jignesh Patoliya (Assistant Professor)

2

V.T.Patel Department of Electronics & Communication, Chandubhai S. Patel Institute of Technology (CSPIT),

Charotar University of Science and Technology (CHARUSAT)

Email: 17pgevd012@charusat.edu.in, patelbhumi6964@gmail.com

Abstract: The cost of testing software and handling errors within a development cycle rather than the subsequent

cycles, has been estimated very high. This emphasizes that current testing methods are often inadequate, and that

helping reduce software bugs and errors is an important area of research with a substantial payoff. This is

particularly true for the increasingly complex, distributed systems used in many applications from embedded control

systems to military command and control systems or (for our research) critical avionics applications or systems. The

purpose of producing the tool is to help in software testing as well as to reduce cost of it for safety critical avionics

applications. These systems may exhibit intermittent or transient errors after prolonged execution that are very

difficult to diagnose. Our goal is to help reduce the high cost of developing test cases for safety-critical software

applications that require a certain level of coverage for certification, for example, safety critical avionics systems

that need to demonstrate MC/DC (modified condition and decision) coverage of the code. This paper explores

strategies for automatic test case generation using Pycparser with different code coverage criteria or structural

coverage criteria. This criteria includes function coverage, statement coverage, branch coverage and condition

coverage to measure what percentage of code has been exercised by a test suite. Coverage criteria are usually

defined as rules or requirements, which a test suite needs to satisfy. We show that how the automated test case

generating tool can be used to automatically generate test scenarios.

Index Terms- Introduction, Scope, Out of Scope, Structural Coverage Analysis, Related Work, System Framework,

Conclusion and Future work

1. INTRODUCTION

Software development for critical avionics control

systems, such as the software controlling aeronautics

applications like Aircraft Flight Control System,

Engine Control System, Flight Management Control

Systems are costly, time consuming, and error prone

process.[1] In such projects, the validation and

verification phase (V&V) consume approximately

50%-70% of the software development resources.

Thus, if the process of deriving test cases for V&V

could be automated and provides requirements-based

and code based test suites that satisfy the most

stringent standards (such as DO-178B-the standard

governing the development of flight-critical software

for civil aviation , dramatic time cost savings would

be realized.[2]

This paper presents a method for automatically

generating test cases to structural coverage criteria,

which presents a method for automatically generating

test cases for Statement Coverage, Brach Coverage

and Condition Coverage of test suit. We show how a

tool can be used to generate complete test cases that

provide a predefined coverage of any software

development artifact. Software testing is one of the

most expensive parts of software development. The

goal of testing is to detect as many errors as possible

with minimum cost. Often some coverage criteria is

specified that needs to be satisfied during testing.

Testcases should be selected to achieve the desired

coverage and detect maximum possible errors.

Selecting testcases is a challenging task, usually

performed manually on a case-by-case basis. Clearly,

a tool that will automatically generate useful testcases

for a class of software modules will be extremely

useful. [3] We have used Pycparser in this automatic

test case generation tool which helps to generate

tokens from C source code and these tokens can be

used to generate test cases.

2. SCOPE

Experiment and Test conditions age of (switch case,

if-else, while circle and for circle with various

administrators) of test suit.

3. OUT OF SCOP:

This device won't take some other documents with

the exception of .C records as an info. So it can't be

utilized for testing some other source code document.

mailto:17pgevd012@charusat.edu.in
mailto:patelbhumi6964@gmail.com

International Journal of Research in Advent Technology, Vol.7, No.3, March 2019

E-ISSN: 2321-9637

Available online at www.ijrat.org

1236

It won't consider some other activities of C code out

of these contingent explanations.

4. STRUCTURAL COVERAGE ANALYSIS

(SCA)

In programming testing auxiliary inclusion

investigation is a standout amongst the most critical

part and here we are going to utilize this for produce

experiments. Every necessity in application at least

one tests which demonstrate that it has been executed

effectively. Auxiliary inclusion demonstrates that

these tests practice the majority of the code. As

indicated by DO-178B Structural inclusion will be

articulation inclusion, choice inclusion and MC/DC

inclusion relying upon the product level. DO-178B

(like necessity based testing), which perform basic

inclusion has some key advantages: prerequisites are

finished as for code, experiments are finished, no

code is conveyed that shouldn't be there, code for use

in different designs is unmistakably distinguished.

Auxiliary inclusion incorporates: Statement

inclusion, Decision inclusion, MC/DC inclusion.

Explanation inclusion estimates whether every

announcement experienced. This is influenced by

computational proclamations than by choices.

For example:

If((x>1)&&(y=0))

{

z=z/x;

}

If((z=2)||(y>1))

{

z=z+1;

}

By x=2, y=0, z=4 as input every statement is

executed once.

Articulation inclusion likewise incorporate condition

inclusion, various condition inclusion, circle

inclusion.

Choice inclusion estimates whether Boolean

articulations, for example, if explanation and keeping

in mind that announcement assessed to both genuine

and false.

For example:

If(a>b)

{

Print(“hello”);

}

Else

{

Print(“bye”);

}

Here either evident case or false case so both genuine

and false experiment will be produced.

This Structural Analysis is strategy which will break

down the entire code of the product covering the

conditions, circles branches and articulations and as

needs be it will create fitting experiments naturally

which needn't bother with human connection for

check.

This investigation will likewise check for the

Standards a flying programming ought to pursue

which will consider for legitimacy to get FAA

Certificate (for confirming appropriate working of the

product for flying machine frameworks).[5]

5. RELATED WORK

Most previous work on test data generation for

structural testing of sequential programs addresses

the problem of finding data to cover a test objective

in the form of given node, branch or path of the

control flow graph.

Static approaches to test case generation typically

extract the constraints on input values (path

predicate) corresponding to a path from the control

flow graph covering the test objective and then solve

these constraints to find a test case which activates

the path. In theory, symbolic execution can be used to

construct the path predicate. However, in practice

symbolic execution encounters problems in the

detection of infeasible paths (notably in the case of

loops with a variable number of iterations), the

treatment of aliases and the complexity of the

formula which are gradually built up. Various ways

around these shortcomings have therefore been

proposed.[4]

Dynamic approaches avoid the problems of symbolic

execution by not using the path predicate. Instead, the

program is instrumented so as to evaluate, at each

execution, the “distance” from the test objective and

general heuristic function minimization techniques

are used to search for input values to reduce this

distance to zero. The disadvantages of these

techniques are that they may need a great many

executions before a test case is found and they may

fail to find a test case even when one exists.[4]

We maintain that, for full structural coverage, we do

not need to construct the control flow graph. If each

path to be covered is selected from the control flow

graph then the feasibility of each one must be

checked. This problem is reduced in our approach.

Like the dynamic approach to test data generation,

our method is based on dynamic analysis. Because of

Pycparser used in our tool we can easily find

conditional or looping statements from input C

source code and after finding all the statements we

can generate test cases related to that statements

using dynamic analysis method. We suffer neither

from the approximations and complexity of static

analysis, nor from the number of executions

demanded by the heuristic algorithms used in

function minimization.

International Journal of Research in Advent Technology, Vol.7, No.3, March 2019

E-ISSN: 2321-9637

Available online at www.ijrat.org

1237

6. SYSTEM FRAMEWORK

Create an automated test case generation system or

tool as shown in figure. A brief introduction on the

functions of major components of the system:

Fig2. Block Diagram of the System

6.1. Input Data

Data shall be C source code file or directory.

Preprocessed file shall also be accepted for the

procedure. Input shall be taken by user by choosing

path where the input file is situated. User shall also

select whole directory where number of source code

files are situated.

6.2. Pycparser

We have used Pycparser in our tool for parsing C

source code file as well as for generating tokens.

These tokens are used for generate test cases. Here

Pycparser works as a Lexer and Parser. We can say

that it is a combination of both Lexer and Parser.

Pycparser is a parser which can parse C code file and

it is written in pure Python. The major need of our

application is to parse C code file which is a input of

the system and Pycparser is designed to parse this

kind of files and therefore we have used it to make

our tool better and easy to work.

Pycparser is unique in the sense that it's written in

pure Python - a very high level language that's easy to

experiment with and tweak. To people familiar with

Lex and Yacc, Pycparser's code will be simple to

understand. It also has no external dependencies

(except for a Python interpreter), making it very

simple to install and deploy.

Pycparser aims to support the full C99 language.

Some features from C11 are also supported, and

patches to support more are welcome.

Pycparser supports very few GCC extensions, but

it's fairly easy to set things up so that it parses code

with a lot of GCC-isms successfully. Pycparser very

closely follows the C grammar provided in Annex A

of the C99 standard. Pycparser was tested on Python

2.7, 3.4-3.6, on both Linux and Windows. Pycparser

has no external dependencies. The non-stdlib library

it uses is PLY, which is bundled in Pycparser/ply.

Note that pycparser (and PLY) uses docstrings for

grammar specifications. Python installations that strip

docstrings will fail to instantiate and use pycparser.

You can try to work around this problem by making

sure the PLY parsing tables are pre-generated in

normal mode; this isn't an officially supported/tested

mode of operation, though.

In order to be compilable, C code must be

preprocessed by the C preprocessor-cpp. cpp handles

preprocessing directives like #include and #define,

removes comments, and performs other minor tasks

that prepare the C code for compilation. If you import

the top-level parse file function from

the pycparser package, it will interact with cpp for

you, as long as it's in your PATH, or you provide a

path to it.

C code almost always #includes various header files

from the standard C library, like stdio.h. While (with

some effort) pycparser can be made to parse the

standard headers from any C compiler, it's much

simpler to use the provided "fake" standard includes

in utils/fake_libc_include. These are standard C

header files that contain only the bare necessities to

allow valid parsing of the files that use them. As a

bonus, since they're minimal, it can significantly

improve the performance of parsing large C files.

The key point to understand here is

that pycparser doesn't really care about the

semantics of types. It only needs to know whether

some token encountered in the source is a previously

defined type. This is essential in order to be able to

parse C correctly.[6]

6.3. Lexer

The lexer, also called lexical analyzer or tokenizer,

is a program that breaks down the input source code

into a sequence of lexemes. It reads the input source

code character by character, recognizes the lexemes

and outputs a sequence of tokens describing the

lexemes. This process will perform lexical analysis

on the source code i.e input. Examples of tokens are

listed below:

Token name Sample values

Identifier Val1,y,var

Keyword If , while , return

Separator { , (, ;

Operator + , > , =

International Journal of Research in Advent Technology, Vol.7, No.3, March 2019

E-ISSN: 2321-9637

Available online at www.ijrat.org

1238

Literal False , 3.02e37 , “name”

Comment /*function to add numbers*/ ,

//display output

Table1. Types of Tokens

It will divide the code into tokens and store in

database. These tokens can be identifier, keyword,

separator, operator, literal, or comment.

A lexeme is a single identifiable sequence of

characters, for example, keywords (such

as class, func, var, and while), literals (such as

numbers and strings), identifiers, operators, or

punctuation characters (such as {, (, and .).

A token is an object describing the lexeme. A token

has a type (e.g. Keyword, Identifier, Number, or

Operator) and a value (the actual characters of the

described lexeme). A token can also contain other

information such as the line and column numbers

where the lexeme was encountered in the source code.

A lexer can be implemented as a class, whose

constructor takes an input string in parameter

(representing the source code to perform lexical

analysis on). It exposes a method to recognize and

return the next token in the input.

6.4. Parser

Parser is used as a compiler. Lexer is also a part of

Parser. Parser considers the tokens as input, it will

evaluate the conditional expressions using different

stacks and grammar given to it.

A parser is a software component that takes input

data (frequently text) and builds a data structure –

often some kind of parse tree, abstract syntax tree or

other hierarchical structure, giving a structural

representation of the input while checking for correct

syntax.

6.5. Generate Tree (AST)

Now the Abstract Syntax Tree will be generated

according to grammar. It will represent structure of

source code written in C programming language.

Fig3. Example of AST

It would contain variables and those will be consider

for decision table. These variables given

automatically generated values and using those

values output will be generated for test case.

In computer science, an abstract syntax tree (AST), or

just syntax tree, is a tree representation of the abstract

syntactic structure of source code written in

a programming language. Each node of the tree

denotes a construct occurring in the source code. The

syntax is "abstract" in the sense that it does not

represent every detail appearing in the real syntax,

but rather just the structural, content-related details.

For instance, grouping parentheses are implicit in the

tree structure, and a syntactic construct like an if-

condition-then expression may be denoted by means

of a single node with three branches.

This distinguishes abstract syntax trees from concrete

syntax trees, traditionally designated parse trees,

which are typically built by a parser during the source

code translation and compiling process. Once built,

additional information is added to the AST by means

of subsequent processing.

6.6. Output Data

The decision table will store all the variables and its

values for generated test cases covering all the

conditions (True-True, True-False, False-True, False-

False) in .xls file. Output will be shown in this .xls

file, where input file name, function name, line

number, conditional statement, test cases related to

that statement and outputs generated according to

those test cases are listed.

7. CONCLUSION AND FUTURE WORK

We have demonstrated an approach of automate the

test-case generation for avionics software engineering

artifacts of source code. We use different coverage

criteria to define what test cases are needed and the

test cases are then generated using the automated test-

case generation tool. We have used Pycparser to

better result of lexical analysis as well as to parse .C

file in a best way. We have included all conditional

and looping statements to cover all the conditions in

the source code for verification.

Results of the tool indicate that the approach has

potential to dramatically reduce the costs associated

with generating test-cases to high levels of coverage.

Future scope includes the Automated Test Case

generation tool required a certain level of coverage

MC/DC (Modified Condition Decision Coverage)

that needs to be added for avionics systems DO-178C

level A V&V. In future we can include switch case or

any other requirement for verification of the software.

International Journal of Research in Advent Technology, Vol.7, No.3, March 2019

E-ISSN: 2321-9637

Available online at www.ijrat.org

1239

REFERENCES
[1]. D.J.Berndt and A. Watkins. High Volume

Software Testing using Genetic Algorithms.

College of Business Administration,

University of South Florida.

[2]. Sanjai Rayadurgam and Mats P.E.

Heimdahl. Coverage based test-case

generation using model checker. Department

of Computer Science and Engineering,

University of Minnesota, USA.

[3]. Pankaj Jalote and Mallaku G. Caballero.

Automated Testcase Generation for Data

Abstraction. Department of Computer

Science and Institute for Advanced

Computer Studies, University of Marylend.

[4]. Nicky Williams, Bruno Marre and Patricia

Mouy On-the-Fly Generation of K-Path

Tests for C Functions. France.

[5]. Bhumikaben Patel and Jignesh Patoliya.

Coverage Based Test_Case Generation

using Automated Test_Case Generating

Tool. V.T.Patel Department of Electronics

& communication, Chandubhai S. Patel

Institute of Technology (CSPIT), Charotar

University of Science and Technology

(CHARUSAT)

[6]. Online resource:

http://github.com/eliben/pycparser

[7]. Online resource: aerointerview.com

[8]. Online resource: rapitasystems.com

[9]. Online resource: Wikipedia

http://github.com/eliben/pycparser

